photos_toulouse

Modélisation des Systèmes Réactifs (MSR'23) LAAS-CNRS, Toulouse (France)
Du 22 au 24 novembre 2023
Data-driven MPC applied to non-linear systems for real-time applications
Daniel Martin Xavier  1@  , Ludovic Chamoin  2@  , Laurent Fribourg  3@  
1 : Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay
Ecole Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, UPMC, Univ Paris Su, Centre National de la Recherche Scientifique - CNRS
91190, Gif-sur-Yvette, France -  France
2 : Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay
Ecole Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, UPMC, Univ Paris Su, Centre National de la Recherche Scientifique - CNRS
3 : Laboratoire Méthodes Formelles
Institut National de Recherche en Informatique et en Automatique, CentraleSupélec, Université Paris-Saclay, Centre National de la Recherche Scientifique, Ecole Normale Supérieure Paris-Saclay

Model Predictive Control (MPC) is a traditional technique widely employed on the control of constrained non-linear systems. In light of the increasing popularity of neural networks, data-driven MPC has emerged as an alternative to alleviate the computation burden of traditional control strategies. This paper aims to replace the constrained optimization problem by training a feed-forward neural network with data collected from an offline MPC simulation. The network's performance is then compared to that of traditional MPC using the Van der Pol oscillator as toy example. Finally, the convergence of the network training error is analytically proven by extending the analysis of neural tangent kernels (NTK) to underparameterized networks.


Personnes connectées : 2 Flux RSS | Vie privée
Chargement...